List of projects

1 Homology with coefficients and the universal coefficients theorem for homology

- Given an abelian group G define the homology groups $H_n(X;G)$ of a topological space X with coefficients in G.
- Prove the universal coefficients theorem that relates homology and homology with coefficients.

2 Eilenberg-Steenrod axioms. Uniqueness of singular homology

- State the Eilenberg–Steenrod axioms for unreduced homology
- Prove that if h_* is any unreduced homology theory and $h_n(*) = \mathbb{Z}$ for n = 0 and 0 otherwise, then $h_n \cong H_n$, where H_n denotes singular cohomology.

3 Homology of product spaces. Künneth theorem

- Define the tensor product of chain complexes. State the Eilenberg–Zilberg theorem
- Prove the Künneth theorem that relates $H_n(X \times Y)$ to $H_n(X)$ and $H_n(Y)$.

4 Lens spaces and their homology

- Describe the lens space L(p,q) for p and q relatively prime positive integers.
- Compute $H_n(L(p,q))$ for all $n \geq 0$.

5 Simplicial homology

- Define the simplicial homology groups of an (abstract) simplicial complex.
- Prove that the simplicial homology groups of a simplicial complex are isomorphic to the singular homology groups of its realization.

6 Cohomology and the universal coefficient theorem

- Define the cohomology groups of a topological space.
- Prove the universal coefficients theorem that relates homology and cohomology.

7 The Hurewicz theorem

- Define the Hurewicz homomorphism $h_n: \pi_n(X) \to H_n(X)$.
- Prove that, for $n \geq 2$, if X is (n-1)-connected, then $H_k(X) = 0$ for k < n and h_n is an isomorphism.

8 Classification of surfaces and their homology

- State the classification theorem for compact surfaces.
- Compute the homology groups of compact surfaces.

References

- [1] W. Fulton, Algebraic Topology: a First Course, GTM 153, Springer Verlag, 1995
- [2] A. Hatcher, Algebraic Topology, Cambridge University Press, 2002.
- [3] W. S. Massey, Singular Homology Theory, GTM 70, Springer-Verlag, 1991.
- [4] W. S. Massey, A Basic Course in Algebraic Topology, GTM 127, Springer-Verlag, 1997.
- [5] J. R. Munkres, Elements of Algebraic Topology, Addison-Wesley Publishing Company, 1984.
- [6] J. J. Rotman, An Introduction to Algebraic Topopogy, Springer-Verlag, 1998.
- [7] E. H. Spanier, Algebraic Topopogy, Springer-Verlag, 1966.
- [8] J. W. Vick, Homology Theory, GTM 145, Springer-Verlag, 1994.